Define Importance Metric for Individual Nodes in Heterogeneous Network

• Intuition: An important node explains features of other nodes linked to it.
 Toy Example:

 Intuition: An important node explains features of other nodes linked to it.

 Toy Example:

 An individual is important if assigning it special parameters increases model fit more than model complexity.
 Can be quantified using a statistical model score.

 size of population from which individual is drawn
 Learning: Input = relational database \(D \), target individual \(t \).
 1. Learn a generic Bayes net \(B_p \) for the entire database.
 2. Restrict database to target individual. Learn Bayes net \(B_t \) for restricted database \(D_t \).

 Interpretation: Randomly draw an individual \(x \) from \(P \).
 1. \(x = t \), the target individual. Apply the individual Bayes net \(B_t \) to the data \(D_t \) for the target individual.
 2. \(x \neq t \), Apply the generic Bayes net \(B_p \) to the database \(D_t \) without the target individual.

Example: individual team = Manchester City
\(D_t \) = matches played by ManCity

Team Evaluation
• Score improvement, BIC values and actual scores driven from data for 8 teams in Premier League.

Player Evaluation
• Score improvement, BIC values and actual scores driven from data for 8 players in Manchester City.

For Teams, ranking based on score Improvement has a high correlation with actual ranking of teams (0.65).
For Players, ranking based on score Improvement has also a high correlation with salary of players (0.67).

Conclusion
• New statistical method for importance metric for individuals in networks.
• Heterogeneous networks: different node types, link features, parameters.
• Use model selection scores from statistical-relational learning.
• Team-Player problem: measure importance of individual for team result.
• On soccer data, importance metric correlates with other rankings.

References
• O. Schulte, F. Riahi, Q. Li, Identifying Important Individuals in Relational Data, AAAI late breaking papers.
• O. Schulte, A tractable pseudo-likelihood function for Bayes nets applied to relational data, SIAM SDM, 2011.